

Third Grade Mathematics

The purpose of this document is to clarify what students should know and be able to do in Quarter 3.

The Competencies listed in the table below are developed from the Texas Essential Knowledge and Skills (TEKS) for that grade level. The chart defines which quarter the Competency is reported (Q1 = Grading Period 1, Q2 = Grading Period 2, etc.).

Teachers will report on the competencies using the Grading Progressions which are comprised of four proficiency levels (developing (DV), progressing (PG), and proficient (PF)) and defines the knowledge and skills students will master on their pathway to proficiency. The Grading Progressions for each Competency are below the yearlong outline of the Competencies. The Grading Progressions define what a student knows and is able to do related to that competency at the end of a unit or quarter. To see what success on each individual competency looks like in a particular unit, please see the Public Overview document for the course.

TEKS	Competencies	Q 1	Q 2	Q 3	Q 4
3.1B, 3.1E, 3.1G	C1— Problem Solving				
	The student analyzes word problems, utilizes a strategy, creates multiple representations,	Х	Х	Х	Х
	communicates mathematical thinking (oral and written), and determines an answer or solution.				
3.1A, 3.1C, 3.1D,	C2— Numeration	V			
3.1F, 3.2D	The student understands how to represent and order whole numbers within real-world context.	х			
3.1A, 3.1C, 3.1D,	C3— Operations				
3.1F, 3.5A, 3.5B,	The student develops concepts of expressions and equations and uses strategies for whole number	Х	Х	Х	
3.4A, 3.4G, 3.4K	computations within real-world context in order to solve problems.				
3.1A, 3.1C, 3.1D,	C4— Fractions			V	v
3.1F, 3.3D, 3.3H, 3.6E	The student understands how to represent and explain fractional units within real-world context.			X	X
3.1A, 3.1C, 3.1D,	C5— Geometry				
3.1F, 3.6A	The student analyzes attributes of two-dimensional shapes and three-dimensional solids within		Х		
	real-world context to develop generalizations about their properties.				
3.1A, 3.1C, 3.1D,	C6— Measurement				
3.1F, 3.7B, 3.6C	The student selects appropriate units, strategies, and tools within real-world context to solve		Х	Х	
	problems involving customary and metric measurements.				
3.1A, 3.1C, 3.1D,	C7—Data Analysis				
3.1F, 3.8B	The student solves problems by collecting, organizing, displaying, and interpreting data within real-				Х
	world context.				

Students who receive a mark of "Proficient" meet the grade level expectation for that Competency.

Learning Progression for Competency 1: Problem Solving

The student analyzes word problems by determining the important information, utilizing a strategy, creating multiple representations, communicating mathematical thinking (oral and written), and determining an answer.

Developing	Progressing	Proficient	Advanced
Identify information needed to	Create and use teacher-selected	Create and use self-selected	Evaluate the problem-solving
solve the problem	representation to organize or	multiple representations to	process or justify the efficiency of
	record and communicate	organize or record and	using a specific strategy (e.g.
Represent the values of the	mathematical thinking such as:	communicate mathematical	When comparing numbers, it is
problem using objects or	 number sentence 	thinking such as:	faster to look at the value of each
pictures of objects	 various types of manipulatives 	 number sentence 	digit rather than building the
	 various types of pictorial 	 various types of manipulatives 	numbers using base ten models.)
	representations	 various types of pictorial 	
	• graphs	representations	Explain connections between
		 graphs 	representations and the context of
		 explaining the process to solve 	the problem situation
	Use teacher-selected strategies		
	to solve a problem such as:	Use self-selected strategies to	Sentence Stem: The (explain
	 count objects or picture of 	solve a problem such as:	representation) because the
	objects	 count objects or picture of 	problem said(evidence) and
	 number paths 	objects	that means(reasoning)
	number lines	 number lines 	
	ten frames	 strip diagrams 	(e.g. I drew a number line jumping to
	 part- whole map (strip 	 fact strategies 	the right which makes the number
	diagram)	 computations using non-standard 	larger because the problem said Jack
	 fact strategies 	algorithm	and Jill had 347 each which means I
	 graphs 	 place value strategy 	will be joining these two numbers.
	estimation	 number sense strategy 	
	 one-to-one correspondence 	• graphs	+ 347
	for comparison		
Explain how the objects or			
nictures of objects represent a	Explain the process used to solve	Justify an answer by comparing it to	347 ?
number	the problem	a predicted answer	

Learning Progression for Competency 3: Operations

The student develops concepts of expressions and equations and uses strategies for **whole number** computations within real-world context in order to solve problems.

Developing	Progressing	Proficient	Advanced
Represent and solve for a product	Represent one-step problems	Represent two-step problems	Create problem situations from
using:	involving multiplication and division	involving multiplication and	one and two step pictorial
 equal groups of objects 	using:	division using:	models, number lines, or
 equal groups of pictures 	 base 10 representations 	 base 10 models 	equations involving addition and
 equal jumps on a number line 	 strip diagrams 	 strip diagrams 	subtraction
 repeated addition 	 number lines 	 number lines 	
 skip counting 	 equations 	 equations 	Justify the efficiency/effectiveness of
 arrays 			the chosen strategy or
 area models 	Solve one-step multiplication	Estimate solutions for problems	representation
 comparison (e.g.3 x 24 is 3 times 	problems within 100 using:	using compatible numbers	
as much as 24)	 pictorial models (number line, 		
 equation 	strip diagram, arrays, or area	Solve two-step problems involving	
	models)	multiplication and division using	
Determine the unknown whole	 recall of facts 	various strategies such as:	
number in a multiplication or division	 partial Products 	 base 10 representations 	
equation when the unknown is either	expanded algorithm	 area models 	
a missing factor or product	 standard algorithm 	 fact strategies 	
		 partial products/partial 	
Represent and solve for a quotient	Solve one step division problems	quotients	
using:	using:	 expanded or standard 	
 equal groups of objects and 	 pictorial models (number line, 	algorithm	
pictures	strip diagram, arrays, or area		
 group size unknown 	models)	Justify an answer by comparing	
 number of groups unknown 	 Recall of facts 	it to an estimated answer	
 equal jumps on a number line 	 Partial quotients 		
 relationship between 			
multiplication and division			
equation			

Learning Progression for Competency 4: Fractions

The student understands how to represent and explain fractional units within real-world context.

Compose and Decompose

Developing	Progressing	Proficient	Advanced
Solve problems involving partitioning	Partition two shapes in different	Decompose a fraction as unit	Create real-world situations that
an object or a set of objects among	ways to represent the same part of a	fractions when given a	require partitioning objects or a
two or more recipients	whole.	• model	set of objects among two or
		 fraction 	more recipients using pictorial
Write a fraction when given	Represent fractions as part of a		representations of fractions
 concrete models 	whole using pictorial models	Compose a fraction when given	
 pictorial models 	including:	 models that represent a sum 	Identify the location of a given
	 fraction strips 	of unit fractions	fraction on an open number line
Identify a fraction given a specified	 number lines 	 number sentence as a sum of 	(0 and 1 are not marked) labeled
point on a number line.	 fraction circles 	unit fractions.	with one fraction.
	Represent fractions as part of a set of objects using models or pictures of models such as: • square tiles • centimeter cubes • two color counters	Describe how many unit fractions it takes to make one whole	

•

Learning Progression for Competency 6: Measurement

The student selects appropriate units, strategies, and tools within real-world context to solve problems involving customary and metric measurements.

Developing Progressing Describe types of measurements and Determine the perimeter of polygons Determine the missing side length of a polygon when given the perimeter how they are measured including: when given • all the side lengths and remaining side lengths • Perimeter • the figure on grid paper Area

Perimeter, Area, Liquid Capacity, and Weight

• Weight	Use pattern squares and grid paper to
Describe the difference and similarities among various types of measurements	 build a rectangle with a given area determine the area of a rectangle with given side lengths

Determine the area of rectangles with whole number side lengths in problems using number of rows times the number of unit squares in each row

Determine when it is appropriate to

use measurements of liquid ounces or ounces that measure weight

Decompose composite figures
formed by rectangles into non-
overlapping rectangles to determine
the area of the original figure using
the additive property of area e.g.

Proficient

F			
	_	_	

Determine liquid volume or weight using units and tools

weight Develop a variety of polygons with the same area and different perimeters and/or same perimeters with different areas.

Advanced

Create real-world situations that

different types of measurement:

require solving problems for

elapsed time

perimeter

area volume